Editing Relation Candidate Edges of Relation Graphs for Document-Level Relation Extraction

نویسندگان

چکیده

本研究では,文書中の用語間の関係を抽出する文書単位関係抽出において,既存の抽出手法に対して関係間の相互作用を考慮するために,用語を節点,抽出済みの関係候補を辺とする関係グラフを構築し,その関係グラフの辺を編集する逐次的な辺編集モデルを提案する.近年,文書単位関係抽出の研究では,深層学習モデルが利用されている.しかしながら,複数のモデルを組み合わせる方法は明確ではなく,研究ごとに実装方法も異なるため,付加的に新たな観点を導入するのは難しい.そこで,異なる観点として関係間の相互作用を考慮できるように,既存手法で抽出済みの関係候補を編集するタスクを提案する.材料合成手順コーパスにおいて,関係がついていない状態から編集するとF値79.4%の性能の逐次的な辺編集モデルで,ルールベース抽出器の出力を編集すると,性能は80.5%から86.6%に向上した.一方で,時間関係抽出の標準的なベンチマークである MATRES コーパスで最先端の深層学習モデルの抽出結果を編集して評価した場合では性能は向上しなかった.これらの差を解析したところ,編集するモデル単体で抽出可能な関係と編集前の関係が異なることが性能の向上に寄与する大きな要因であることを明らかにした.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Document Summarisation Using Generic Relation Extraction

Experiments are reported that investigate the effect of various source document representations on the accuracy of the sentence extraction phase of a multidocument summarisation task. A novel representation is introduced based on generic relation extraction (GRE), which aims to build systems for relation identification and characterisation that can be transferred across domains and tasks withou...

متن کامل

Global Relation Embedding for Relation Extraction

Recent studies have shown that embedding textual relations using deep neural networks greatly helps relation extraction. However, many existing studies rely on supervised learning; their performance is dramatically limited by the availability of training data. In this work, we generalize textual relation embedding to the distant supervision setting, where much largerscale but noisy training dat...

متن کامل

Relation Extraction with Relation Topics

This paper describes a novel approach to the semantic relation detection problem. Instead of relying only on the training instances for a new relation, we leverage the knowledge learned from previously trained relation detectors. Specifically, we detect a new semantic relation by projecting the new relation’s training instances onto a lower dimension topic space constructed from existing relati...

متن کامل

Relation Extraction

Many applications in information extraction, natural language understanding, information retrieval require an understanding of the semantic relations between entities. We present a comprehensive review of various aspects of the entity relation extraction task. We also cover relation extraction task in the medical domain and various challenges and useful resources available in the medical domain.

متن کامل

Incorporating Relation Paths in Neural Relation Extraction

Distantly supervised relation extraction has been widely used to find novel relational facts from plain text. To predict the relation between a pair of two target entities, existing methods solely rely on those direct sentences containing both entities. In fact, there are also many sentences containing only one of the target entities, which also provide rich useful information but not yet emplo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Shizen gengo shori

سال: 2023

ISSN: ['1340-7619', '2185-8314']

DOI: https://doi.org/10.5715/jnlp.30.557